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Structure Formation



SKA EraRadio Continuum Survey

 HI Galaxy Redshift Survey

 HI Intensity Mapping Survey
(Individual HI Galaxies NOT detected, only integrated HI emission.) 
precise BAO, RSD up to z~3. 
excellent constraints on Dark Energy and curvature. 
probe the largest scales ever – non-Gaussianity,  

modified gravity.

(Total radio emission from galaxies, no redshift information.) 
first large-scale weak lensing survey in radio. 
test isotropy of the universe. 
tight constraints on non-Gaussianity.

(Individual HI Galaxies detected, very accurate redshift.) 
precise RSD at z<0.5.



Planck Collaboration 2015 (arXiv:1502.01590)

Interaction between Dark Energy nd Dark 
Matter is a theoretical possibility that may 
help to solve the coincidence problem.

Dark energy and dark matter interact via 
energy-momentum exchange.

The transfer of energy-momentum between 
dark matter and dark energy is not ruled out 
by current observations.

Dark Interaction



Dark Interaction

Hashim et al, Phys.Rev. D90 (2014) 103518

Perturbation theory shows a change on very large scales due to the interaction that is 
similar to the effect of PNG in the absence of dark interaction.

What happens on nonlinear scales?

We need to perform N-body simulations.
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Input Power Spectra for the N-body simulations
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Figure 3. Matter power spectra at z = 60 for interacting DE models with
constant coupling as computed by CMBEASY.

and then computing the gravitational potential and the acceleration
deriving from the spatial distribution of that particle species alone.
In this way, the total force is built up as a sum of several partial
force fields from each particle type.

3.1.5 Initial conditions

The initial conditions of a cosmological N-body simulation need to
specify the positions and velocities of all the particles in the cos-
mological box at the starting redshift zi of the simulation. These
quantities are usually computed by setting up a random-phase re-
alization of the power spectrum of the studied cosmological model
according to the Zel’dovich approximation (Zel’dovich 1970). The
normalization amplitude of the power spectrum is adjusted such
that the linearly evolved rms-fluctuations σ8 on a top-hat scale of
8h−1Mpc at a given redshift znorm (usually chosen to be znorm =
0) have a prescribed amplitude.

The coupling between DE and CDM can have a strong im-
pact on the transfer function of matter density fluctuations, as
first pointed out by Mainini & Bonometto (2007b). For this reason
we compute the required initial power spectrum directly with the
modified Boltzmann code CMBEASY, because the phenomenolog-
ical parameterizations of the matter power spectrum available for
the ΛCDM cosmology (e.g. Bardeen et al. 1986; Eisenstein & Hu
1998) would not be accurate enough. The resulting effect on the
power spectrum is shown in Fig. 3 for the different models consid-
ered in our set of simulations.

Once the desired density field has been realized with this pro-
cedure, the displacements of the particles from the grid points need
to be rescaled with the linear growth factor D+ for the cosmolog-
ical model under investigation between the redshifts znorm and zi
in order to set the correct amplitude of the power spectrum at the
starting redshift of the simulation. Also, the velocities of the par-
ticles are related to the local overdensities according to linear per-
turbation theory, via the following relation, here written in Fourier
space:

v(k, a) = if(a)aHδ(k, a)
k

k2
, (39)

where the growth rate f(a) is defined as

f(a) ≡
d lnD+

d ln a
. (40)

This requires an accurate calculation of the linear growth function
D+(z) for the coupled model, which we again compute numeri-
cally with CMBEASY.

We note that a phenomenological parameterization of the
growth function for coupled DE models with constant cou-
pling to dark matter has recently been made available by
Di Porto & Amendola (2008). However, it is only valid for mod-
els with no admixture of uncoupled matter, whereas in our case we
also have a baryonic component. Also, in the ΛCDM cosmology,
the total growth rate is well approximated by a power of the total
matter density Ωγ

M , with γ = 0.55, roughly independently of the
cosmological constant density (Peebles 1980). This is however no
longer true in coupled cosmologies, as we show in Fig. 4. We find
that, for our set of coupled DE models, a different phenomenologi-
cal fit given by

f(a) ∼ Ωγ
M (1 + γ

ΩCDM

ΩM
ϵcβ

2
c ) , (41)

with γ = 0.56 (as previously found in Amendola & Quercellini
2004) and ϵc = 2.4 works well. The fit (41) reproduces the growth
rate with a maximum error of∼ 2% over a range of coupling values
between 0 and 0.2 and for a cosmic baryon fraction Ωb/Ωm at
z = 0 in the interval 0.0 − 0.1 for the case of the potential slope
α = 0.143 (corresponding to the slope of the RP1-RP5 models).
For a value of α = 2.0 (corresponding to the slope assumed for
RP6) the maximum error increases to ∼ 4% in the same range of
coupling and baryon fraction. In Fig. 4, we plot both the fitting
formulas together with the exact f(a). For our initial conditions
setup we in any case prefer to use the exact function f(a) directly
computed for each model with CMBEASY, rather than any of the
phenomenological approximations.

3.2 Tests of the numerical implementation: the linear growth
factor

As a first test of our implementation we check whether the linear
growth of density fluctuations in the simulations is in agreement
with the linear theory prediction for each coupled DE model un-
der investigation. To do so, we compute the growth factor from
the simulation outputs of the low-resolution simulations described
in Table 2 by evaluating the change in the amplitude of the mat-
ter power spectrum on very large scales, and we compare it with
the solution of the system of coupled equations for linear perturba-
tions (19), numerically integrated with CMBEASY. The comparison
is shown in Fig. 5 for all the constant coupling models. The accu-
racy of the linear growth computed from the simulations in fitting
the theoretical prediction is of the same order for all the values
of the coupling, and the discrepancy with respect to the numerical
solution obtained with our modified version of GADGET-2 never
exceeds a few percent.

3.3 Our set of N-body simulations

In our simulations, we are especially interested in the effects that
the presence of a coupling between DE and CDM induces in the
properties of collapsed structures, and we would like to understand
which of these effects are due to linear features of the coupled
theory, and which due to the modified gravitational interaction in
the dark sector. This goal turns out to be challenging due to the
presence of several different sources of changes in the simulation
outcomes within our set of runs. To summarize this, let us briefly
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δij∇i∇jY = −|k|2Y . Analogously, the perturbed stress energy
tensor for each fluid (α) can be written as T̃ µ

(α)ν = T µ
(α)ν + δT µ

(α)ν

where the perturbations read as:

δT 0
(α)0 = −ρ(α)δ(α)Y , (13)

δT 0
(α)i = h(α)(v(α) −B)Yi ,

δT i
(α)0 = −h(α)v(α)Y

i ,

δT i
(α)j = p(α)

[

πL(α)Y δ
i
j + πT (α)Y

i
j

]

.

The perturbed conservation equations then become:

(ραδα)
′+3Hραδα+hα(kvα+3H ′

L)+3HpαπLα = −δQ(α)0(14)

for the energy density perturbation δα = δρα/ρα, and:

[hα(vα −B)]′ + 4Hhα(vα −B)

−kpαπLα − hαkA+
2
3
kpπTα = δQ(α)i (15)

for the velocity perturbation vα.
The scalar field φ can also be perturbed, yielding in Fourier

space

φ̃ = φ+ δφ = φ+ χ(τ )Y . (16)

Furthermore, we can express the perturbations of the source as:

δQ(φ)0 = −
β(φ)

M
ρcδφ

′ −
β(φ)

M
φ′δρc −

β,φ
M

φ′ρcδφ , (17)

δQ(φ)i = k
β(φ)

M
ρcδφ . (18)

In the Newtonian gauge (B = 0, HT = 0, HL = Φ, A = Ψ) the
set of equations for the density and velocity perturbations for DE
and CDM read:

δρ′φ + 3H(δρφ + δpφ) + khφvφ + 3hφΦ
′ = (19)

β(φ)

M
ρcδφ

′ +
β(φ)

M
φ′δρc +

β,φ
M

φ′δφρc ,

δρ′c + 3Hδρc + kρcvc + 3ρcΦ
′ =

−
β(φ)

M
ρcδφ

′ −
β(φ)

M
φ′δρc −

β,φ
M

φ′δφρc ,

hφv
′
φ +

(

h′
φ + 4Hhφ

)

vφ − kδpφ − khφΨ = k
β(φ)

M
ρcδφ ,

v′c +

(

H −
β(φ)

M
φ′

)

vc − kΨ = −k
β(φ)

M
δφ .

The perturbed Klein Gordon equation in Newtonian gauge reads:

δφ′′ + 2Hδφ′ +
(

k2 + a2U,φφ

)

δφ− φ′
(

Ψ
′ − 3Φ′

)

+

2a2U,φΨ = 3H2Ωc [β(φ)δc + 2β(φ)Ψ+ β,φ(φ)δφ] .(20)

For the N-body implementation we are interested in, the New-
tonian limit holds, for which λ ≡ H/k ≪ 1. In this case we have

δφ ∼ 3λ2Ωcβ(φ)δc . (21)

In this limit, the gravitational potential is approximately given by

Φ ∼
3
2
λ2

M2

∑

α̸=φ

Ωαδα . (22)

We can then define an effective gravitational potential

Φc ≡ Φ+
β(φ)

M
δφ, (23)

which also reads, in real space and after substituting the expressions
forΦ (Eqn. 22) and for δφ (Eqn. 21):

∇2
Φc = −

a2

2
ρcδc

(

1 + 2β2(φ)
)

−
a2

2

∑

α̸=φ,c

ραδα , (24)

where the last term takes into account the case in which other com-
ponents not coupled to the DE are present in the total energy budget
of the Universe. Cold dark matter then feels an effective gravita-
tional constant

G̃c = GN [1 + 2β2(φ)], (25)

where GN is the usual Newtonian value. Therefore, the strength
of the gravitational interaction is not a constant anymore if β is a
function of the scalar field φ. The last equation in (19), written in
real space and in terms of the effective gravitational potential, gives
a modified Euler equation of the form:

∇v
′
c +

(

H−
β(φ)

M
φ′

)

∇vc +

3
2
H2

[

Ωcδc + 2Ωcδcβ
2(φ) +

∑

α̸=φ,c

Ωαδα

]

= 0 . (26)

As in Amendola (2004), if we assume that the CDM is con-
centrated in one particle of massmc at a distance r from a particle
of massMc at the origin, we can rewrite the CDM density contri-
bution as

Ωcδc =
8πGMce

−
∫

β(φ)dφ
δ(0)

3H2a
, (27)

where we have used the fact that a non-relativistic particle at po-
sition r has a density given by mcnδ(r) (where δ(r) stands for

the Dirac distribution) with mass given bymc ∝ e
−
∫

β(φ)dφ, for-
mally obtained from equation (9). We have further assumed that the
density of theMc mass particle is much larger than ρc. The Euler
equation in cosmic time (dt = adτ ) can then be rewritten in the
form of an acceleration equation for the particle at position r:

v̇c = −H̃vc −∇
G̃cM̃c

r
, (28)

where we explicitely see that the usual equation is modified in three
ways.

First, the velocity-dependent term now contains an additional
contribution given by the second term of the expression defining
H̃:

H̃ ≡ H

(

1−
β(φ)

M
φ̇
H

)

. (29)

Second, the CDM particles feel an effective gravitational constant
G̃ given by (25). Third, the CDM particles have an effective mass,
varying with time, given by:

M̃c ≡ Mce
−
∫

β(φ)dφ
da

da
. (30)

Eqn. 28 is very important for our discussion since it represents the
starting point for the implementation of coupled DE models in an
N-body code. We will discuss in detail how this implementation is
realized in Sec. 3.1, but it is important to stress here that Eqn. 28
is written in a form that explicitely highlights its vectorial nature,
which has not been presented in previous literature. The vectorial
nature of Eqn. 28 is a key point in its numerical implementation
and therefore needs to be properly taken into account.
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−
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form of an acceleration equation for the particle at position r:
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−
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Eqn. 28 is very important for our discussion since it represents the
starting point for the implementation of coupled DE models in an
N-body code. We will discuss in detail how this implementation is
realized in Sec. 3.1, but it is important to stress here that Eqn. 28
is written in a form that explicitely highlights its vectorial nature,
which has not been presented in previous literature. The vectorial
nature of Eqn. 28 is a key point in its numerical implementation
and therefore needs to be properly taken into account.
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Figure 3. Matter power spectra at z = 60 for interacting DE models with
constant coupling as computed by CMBEASY.

and then computing the gravitational potential and the acceleration
deriving from the spatial distribution of that particle species alone.
In this way, the total force is built up as a sum of several partial
force fields from each particle type.

3.1.5 Initial conditions

The initial conditions of a cosmological N-body simulation need to
specify the positions and velocities of all the particles in the cos-
mological box at the starting redshift zi of the simulation. These
quantities are usually computed by setting up a random-phase re-
alization of the power spectrum of the studied cosmological model
according to the Zel’dovich approximation (Zel’dovich 1970). The
normalization amplitude of the power spectrum is adjusted such
that the linearly evolved rms-fluctuations σ8 on a top-hat scale of
8h−1Mpc at a given redshift znorm (usually chosen to be znorm =
0) have a prescribed amplitude.

The coupling between DE and CDM can have a strong im-
pact on the transfer function of matter density fluctuations, as
first pointed out by Mainini & Bonometto (2007b). For this reason
we compute the required initial power spectrum directly with the
modified Boltzmann code CMBEASY, because the phenomenolog-
ical parameterizations of the matter power spectrum available for
the ΛCDM cosmology (e.g. Bardeen et al. 1986; Eisenstein & Hu
1998) would not be accurate enough. The resulting effect on the
power spectrum is shown in Fig. 3 for the different models consid-
ered in our set of simulations.

Once the desired density field has been realized with this pro-
cedure, the displacements of the particles from the grid points need
to be rescaled with the linear growth factor D+ for the cosmolog-
ical model under investigation between the redshifts znorm and zi
in order to set the correct amplitude of the power spectrum at the
starting redshift of the simulation. Also, the velocities of the par-
ticles are related to the local overdensities according to linear per-
turbation theory, via the following relation, here written in Fourier
space:

v(k, a) = if(a)aHδ(k, a)
k

k2
, (39)

where the growth rate f(a) is defined as

f(a) ≡
d lnD+

d ln a
. (40)

This requires an accurate calculation of the linear growth function
D+(z) for the coupled model, which we again compute numeri-
cally with CMBEASY.

We note that a phenomenological parameterization of the
growth function for coupled DE models with constant cou-
pling to dark matter has recently been made available by
Di Porto & Amendola (2008). However, it is only valid for mod-
els with no admixture of uncoupled matter, whereas in our case we
also have a baryonic component. Also, in the ΛCDM cosmology,
the total growth rate is well approximated by a power of the total
matter density Ωγ

M , with γ = 0.55, roughly independently of the
cosmological constant density (Peebles 1980). This is however no
longer true in coupled cosmologies, as we show in Fig. 4. We find
that, for our set of coupled DE models, a different phenomenologi-
cal fit given by

f(a) ∼ Ωγ
M (1 + γ

ΩCDM

ΩM
ϵcβ

2
c ) , (41)

with γ = 0.56 (as previously found in Amendola & Quercellini
2004) and ϵc = 2.4 works well. The fit (41) reproduces the growth
rate with a maximum error of∼ 2% over a range of coupling values
between 0 and 0.2 and for a cosmic baryon fraction Ωb/Ωm at
z = 0 in the interval 0.0 − 0.1 for the case of the potential slope
α = 0.143 (corresponding to the slope of the RP1-RP5 models).
For a value of α = 2.0 (corresponding to the slope assumed for
RP6) the maximum error increases to ∼ 4% in the same range of
coupling and baryon fraction. In Fig. 4, we plot both the fitting
formulas together with the exact f(a). For our initial conditions
setup we in any case prefer to use the exact function f(a) directly
computed for each model with CMBEASY, rather than any of the
phenomenological approximations.

3.2 Tests of the numerical implementation: the linear growth
factor

As a first test of our implementation we check whether the linear
growth of density fluctuations in the simulations is in agreement
with the linear theory prediction for each coupled DE model un-
der investigation. To do so, we compute the growth factor from
the simulation outputs of the low-resolution simulations described
in Table 2 by evaluating the change in the amplitude of the mat-
ter power spectrum on very large scales, and we compare it with
the solution of the system of coupled equations for linear perturba-
tions (19), numerically integrated with CMBEASY. The comparison
is shown in Fig. 5 for all the constant coupling models. The accu-
racy of the linear growth computed from the simulations in fitting
the theoretical prediction is of the same order for all the values
of the coupling, and the discrepancy with respect to the numerical
solution obtained with our modified version of GADGET-2 never
exceeds a few percent.

3.3 Our set of N-body simulations

In our simulations, we are especially interested in the effects that
the presence of a coupling between DE and CDM induces in the
properties of collapsed structures, and we would like to understand
which of these effects are due to linear features of the coupled
theory, and which due to the modified gravitational interaction in
the dark sector. This goal turns out to be challenging due to the
presence of several different sources of changes in the simulation
outcomes within our set of runs. To summarize this, let us briefly
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Model Potential α β0 β1 wφ(z = 0) σ8(z = 0)

ΛCDM V (φ) = A – – – −1.0 0.809
EXP001 V (φ) = Ae−αφ 0.08 0.05 0 −0.997 0.825
EXP002 V (φ) = Ae−αφ 0.08 0.1 0 −0.995 0.875
EXP003 V (φ) = Ae−αφ 0.08 0.15 0 −0.992 0.967
EXP008e3 V (φ) = Ae−αφ 0.08 0.4 3 −0.982 0.895

SUGRA003 V (φ) = Aφ−αeφ
2/2 2.15 -0.15 0 −0.901 0.806

Table 1. The list of cosmological models considered in the CoDECS project and their specific parameters.

Tarrant et al. 2011; Clemson et al. 2011) and a new de-
tailed presentation of these cosmological scenarios would
be superfluous in the present paper. We therefore refer
the interested reader to the above mentioned literature for
a thorough description of coupled DE (cDE) models and
for the derivation of their main equations. We limit our
discussion here to the definition of the notation and of the
conventions adopted for the specific cDE models considered
in our analysis.

In the present paper, we will consider the set of cDE
models presently included in the CoDECS suite of N-body
simulations (Baldi 2011c) – the largest set of cosmological
simulations to date for interacting DE cosmologies – that
have been presented and discussed in Baldi (2011b) and
Baldi (2011c). These are flat cosmological models where the
role of DE is played by a dynamical scalar field φ with a self-
interaction potential V (φ) exchanging energy-momentum
with the CDM fluid through an interaction term defined
by the following set of equations:

φ̈+ 3Hφ̇+
dV
dφ

=

√

2
3
βc(φ)

ρc
MPl

, (1)

ρ̇c + 3Hρc = −
√

2
3
βc(φ)

ρcφ̇
MPl

, (2)

ρ̇b + 3Hρb = 0 , (3)

ρ̇r + 4Hρr = 0 , (4)

3H2 =
1

M2
Pl

(ρr + ρc + ρb + ρφ) , (5)

where the subscripts b, c, and r indicate the baryonic, CDM,
and radiation components of the universe, respectively. In
Eqs. (1-5) an overdot represents a derivative with respect
to the cosmic time t, H ≡ ȧ/a is the Hubble function, and
MPl ≡ 1/

√
8πG is the reduced Planck mass. The source

terms at the right hand side of Eqs. (1,2) represent the
interaction between DE and CDM, where the dimension-
less coupling function βc(φ) sets the coupling strength while
the sign of the quantity βc(φ)φ̇ defines the direction of the
energy-momentum flow between the two components. The
energy exchange determines a time variation of the CDM
particle mass, according to the equation:

d lnMc

dt
= −

√

2
3
βc(φ)φ̇ , (6)

which can be derived from Eq. (2).
In the present work, we will consider two possible

choices for the coupling function βc(φ), defined as:

βc(φ) = β0e
β1φ , (7)

namely a constant coupling (β1 = 0) and an exponen-

tially growing coupling (β1 > 0). The latter case, first pro-
posed by Amendola (2004) and subsequently investigated
by Baldi (2011d), allows for larger values of the present
coupling strength β0 as compared to constant coupling
models, since the impact of the interaction on the back-
ground expansion history of the universe and on the Cos-
mic Microwave Background anisotropies is strongly sup-
pressed by the time evolution of the scalar field φ. Fur-
thermore, we will consider two distinct choices also for the
scalar self-interaction potential V (φ), namely an exponen-
tial potential (Lucchin & Matarrese 1985; Wetterich 1988;
Ferreira & Joyce 1998):

V (φ) = Ae−αφ (8)

and a SUGRA potential (Brax & Martin 1999):

V (φ) = Aφ−αeφ
2/2 , (9)

where for simplicity the field φ has been expressed in
units of the reduced Planck mass in Eqs. (8,9). The main
phenomenological difference between these two potential
functions resides in the existence of a global minimum at a
finite φ value for the SUGRA potential, while the exponen-
tial potential is monotonically decreasing to zero for φ → ∞.
The presence of a global minimum in the SUGRA potential
allows for an inversion of the scalar field motion and for a
consequent change of sign – in case of a constant coupling
βc – of the quantity βcφ̇, as discussed in Baldi (2011b) (see
also Tarrant et al. 2011). Due to such inversion, the DE
equation of state parameter wφ ≡ pφ/ρφ shows a “bounce”
on the cosmological constant “barrier” wφ = −1, for which
this class of models has been dubbed the “Bouncing cDE
scenario” (Baldi 2011b). For the specific model considered
in the present work, the “bounce” happens at relatively
recent epochs, zinv ≈ 6.8, and has significant consequences
on the evolution of linear and nonlinear perturbations
(see again Baldi 2011b). The effect of the coupling on
the background evolution of the universe is to allow for a
phase of Early Dark Energy which goes under the name
of φ-MDE (φ-Matter Dominated Epoch, see Amendola
2000) or G-φ-MDE (Growing-φ-Matter Dominated Epoch,
see Baldi 2011d) for models with constant and variable
couplings, respectively. Such scaling behavior of the DE
density determines a different expansion history of cDE
models with respect to a ΛCDM cosmology with the same
cosmological parameters, which represents one of the most
characteristic features of cDE scenarios and that is correctly
taken into account in the numerical implementation of the
CoDECS simulations described in the next Section. All
the features and the parameters of the different models
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Halo Mass function (non-Gaussian)

Is it degenerate with Dark Energy Interaction signal ? 
Hashim et al, in preparation.



Interaction between dark matter and dark energy is not ruled out by current 
observations. 

Future galaxy surveys covering huge volumes (SKA) of the universe are needed to 
constrain interacting Dark Energy models. 

Halo Mass Function from N-Body simulations of interacting dark energy models show 
enhancement on very large masses.  

Primordial non-Gaussianity show a similar HMF signal which might be degenerate with 
Dark energy Interaction.   

Conclusion


