Símulating the Interaction between Dark Energy and Dark Matter

Mahmoud Hashim

University of the Western Cape Supervisors: Prof. Roy Maartens (UWC, ICG) Dr. Chris Clarkson (UCT) Dr. Daniele Bertacca (BU)

SKA Postgraduate Conference, Stellenbosch, Dec 2015

Structure Formation

Radio Continuum Survey

(Total radio emission from galaxies, no redshift information.)

- first large-scale weak lensing survey in radio.
- test isotropy of the universe.
- tight constraints on non-Gaussianity.

HI Galaxy Redshift Survey

(Individual HI Galaxies detected, very accurate redshift.)
precise RSD at z<0.5.

SKA Era

HI Intensity Mapping Survey

(Individual HI Galaxies NOT detected, only integrated HI emission.)

- precise BAO, RSD up to z~3.
- excellent constraints on Dark Energy and curvature.
- probe the largest scales ever non-Gaussianity, modified gravity.

Dark Interaction

Interaction between Dark Energy nd Dark Matter is a theoretical possibility that may help to solve the coincidence problem.

Dark energy and dark matter interact via energy-momentum exchange.

Planck Collaboration 2015 (arXiv:1502.01590)

The transfer of energy-momentum between dark matter and dark energy is not ruled out by current observations.

Dark Interaction

Perturbation theory shows a change on very large scales due to the interaction that is similar to the effect of PNC in the absence of dark interaction.

Mc

GN

x = q + S(q)

+ ICs (ZA, 2LPT)

$$oldsymbol{v}(oldsymbol{k},a) = if(a)aH\delta(oldsymbol{k},a)rac{oldsymbol{k}}{k^2}$$

Mc

Gc

+ ICs (ZA, 2LPT) + Interaction

$$\tilde{H} \equiv H \left(1 - \frac{\beta(\phi)}{M} \frac{\dot{\phi}}{H} \right) \quad f(a) \sim \Omega_M^{\gamma} (1 + \gamma \frac{\Omega_{\rm CDM}}{\Omega_M} \epsilon_c \beta_c^2)$$
$$\tilde{G}_c = G_N [1 + 2\beta^2(\phi)], \quad \tilde{M}_c \equiv M_c e^{-\int \beta(\phi) \frac{d\phi}{da} da} \quad .$$

Halo Mass function

Weiguang et al. 2012 (arXiv:1201.3568)

Halo Mass function (non-Gaussian)

Hashim et al, in preparation.

Is it degenerate with Dark Energy Interaction signal?

Conclusion

- Interaction between dark matter and dark energy is not ruled out by current observations.
- Future galaxy surveys covering huge volumes (SKA) of the universe are needed to constrain interacting Dark Energy models.
- Halo Mass Function from N-Body simulations of interacting dark energy models show enhancement on very large masses.
- Primordial non-Gaussianity show a similar HMF signal which might be degenerate with Dark energy Interaction.