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δij∇i∇jY = −|k|2Y . Analogously, the perturbed stress energy
tensor for each fluid (α) can be written as T̃ µ

(α)ν = T µ
(α)ν + δT µ

(α)ν

where the perturbations read as:

δT 0
(α)0 = −ρ(α)δ(α)Y , (13)

δT 0
(α)i = h(α)(v(α) −B)Yi ,

δT i
(α)0 = −h(α)v(α)Y

i ,

δT i
(α)j = p(α)

[

πL(α)Y δ
i
j + πT (α)Y

i
j

]

.

The perturbed conservation equations then become:

(ραδα)
′+3Hραδα+hα(kvα+3H ′

L)+3HpαπLα = −δQ(α)0(14)

for the energy density perturbation δα = δρα/ρα, and:

[hα(vα −B)]′ + 4Hhα(vα −B)

−kpαπLα − hαkA+
2
3
kpπTα = δQ(α)i (15)

for the velocity perturbation vα.
The scalar field φ can also be perturbed, yielding in Fourier

space

φ̃ = φ+ δφ = φ+ χ(τ )Y . (16)

Furthermore, we can express the perturbations of the source as:

δQ(φ)0 = −
β(φ)

M
ρcδφ

′ −
β(φ)

M
φ′δρc −

β,φ
M

φ′ρcδφ , (17)

δQ(φ)i = k
β(φ)

M
ρcδφ . (18)

In the Newtonian gauge (B = 0, HT = 0, HL = Φ, A = Ψ) the
set of equations for the density and velocity perturbations for DE
and CDM read:

δρ′φ + 3H(δρφ + δpφ) + khφvφ + 3hφΦ
′ = (19)

β(φ)

M
ρcδφ

′ +
β(φ)

M
φ′δρc +

β,φ
M

φ′δφρc ,

δρ′c + 3Hδρc + kρcvc + 3ρcΦ
′ =

−
β(φ)

M
ρcδφ

′ −
β(φ)

M
φ′δρc −

β,φ
M

φ′δφρc ,

hφv
′
φ +

(

h′
φ + 4Hhφ

)

vφ − kδpφ − khφΨ = k
β(φ)

M
ρcδφ ,

v′c +

(

H −
β(φ)

M
φ′

)

vc − kΨ = −k
β(φ)

M
δφ .

The perturbed Klein Gordon equation in Newtonian gauge reads:

δφ′′ + 2Hδφ′ +
(

k2 + a2U,φφ

)

δφ− φ′
(

Ψ
′ − 3Φ′

)

+

2a2U,φΨ = 3H2Ωc [β(φ)δc + 2β(φ)Ψ+ β,φ(φ)δφ] .(20)

For the N-body implementation we are interested in, the New-
tonian limit holds, for which λ ≡ H/k ≪ 1. In this case we have

δφ ∼ 3λ2Ωcβ(φ)δc . (21)

In this limit, the gravitational potential is approximately given by

Φ ∼
3
2
λ2

M2

∑

α̸=φ

Ωαδα . (22)

We can then define an effective gravitational potential

Φc ≡ Φ+
β(φ)

M
δφ, (23)

which also reads, in real space and after substituting the expressions
forΦ (Eqn. 22) and for δφ (Eqn. 21):

∇2
Φc = −

a2

2
ρcδc

(

1 + 2β2(φ)
)

−
a2

2

∑

α̸=φ,c

ραδα , (24)

where the last term takes into account the case in which other com-
ponents not coupled to the DE are present in the total energy budget
of the Universe. Cold dark matter then feels an effective gravita-
tional constant

G̃c = GN [1 + 2β2(φ)], (25)

where GN is the usual Newtonian value. Therefore, the strength
of the gravitational interaction is not a constant anymore if β is a
function of the scalar field φ. The last equation in (19), written in
real space and in terms of the effective gravitational potential, gives
a modified Euler equation of the form:

∇v
′
c +

(

H−
β(φ)

M
φ′

)

∇vc +

3
2
H2

[

Ωcδc + 2Ωcδcβ
2(φ) +

∑

α̸=φ,c

Ωαδα

]

= 0 . (26)

As in Amendola (2004), if we assume that the CDM is con-
centrated in one particle of massmc at a distance r from a particle
of massMc at the origin, we can rewrite the CDM density contri-
bution as

Ωcδc =
8πGMce

−
∫

β(φ)dφ
δ(0)

3H2a
, (27)

where we have used the fact that a non-relativistic particle at po-
sition r has a density given by mcnδ(r) (where δ(r) stands for

the Dirac distribution) with mass given bymc ∝ e
−
∫

β(φ)dφ, for-
mally obtained from equation (9). We have further assumed that the
density of theMc mass particle is much larger than ρc. The Euler
equation in cosmic time (dt = adτ ) can then be rewritten in the
form of an acceleration equation for the particle at position r:

v̇c = −H̃vc −∇
G̃cM̃c

r
, (28)

where we explicitely see that the usual equation is modified in three
ways.

First, the velocity-dependent term now contains an additional
contribution given by the second term of the expression defining
H̃:

H̃ ≡ H

(

1−
β(φ)

M
φ̇
H

)

. (29)

Second, the CDM particles feel an effective gravitational constant
G̃ given by (25). Third, the CDM particles have an effective mass,
varying with time, given by:

M̃c ≡ Mce
−
∫

β(φ)dφ
da

da
. (30)

Eqn. 28 is very important for our discussion since it represents the
starting point for the implementation of coupled DE models in an
N-body code. We will discuss in detail how this implementation is
realized in Sec. 3.1, but it is important to stress here that Eqn. 28
is written in a form that explicitely highlights its vectorial nature,
which has not been presented in previous literature. The vectorial
nature of Eqn. 28 is a key point in its numerical implementation
and therefore needs to be properly taken into account.
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